Influence of calcination temperature on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate as precursor
نویسنده
چکیده
Effects of calcination temperatures varying from 400 to 1000°C on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in the sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate (THEOS) as water-soluble silica precursor have been investigated. Studies carried out using XRD, FT-IR, TEM, STA (TG-DTG-DTA) and VSM techniques. Results indicated that magnetic properties of samples such as superparamagnetism and ferromagnetism showed great dependence on the variation of the crystallinity and particle size caused by the calcination temperature. The crystallization, saturation magnetization Ms and remenant magnetization Mr increased as the calcination temperature increased. But the variation of coercivity Hc was not in accordance with that of Ms and Mr, indicating that Hc is not determined only by the crystallinity and size of CoFe2O4 nanoparticles. TEM images showed spherical nanoparticles dispersed in the silica network with sizes of 10-30 nm. Results showed that the well-established silica network provided nucleation locations for CoFe2O4 nanoparticles to confinement the coarsening and aggregation of nanoparticles. THEOS as silica matrix network provides an ideal nucleation environment to disperse CoFe2O4 nanoparticles and thus to confine them to aggregate and coarsen. By using THEOS as water-soluble silica precursor over the currently used TEOS and TMOS, the organic solvents are not needed owing to the complete solubility of THEOS in water. Synthesized nanocomposites with adjustable particle sizes and controllable magnetic properties make the applicability of Co-ferrite even more versatile.
منابع مشابه
Effects of Calcination Temperature on the Synthesis, Chemical Structure, and Magnetic Properties of Nano Crystallites Zinc Ferrite Prepared by Combination of Sol-Gel Auto-Combustion and Ultrasonic Irradiation Techniques
Nanocomposite zinc ferrites were synthesized using glycine-nitrates by sol–gel auto-combustion technique. The influence of calcination temperatures varying from 400 to 900°C on structural and magnetic properties of spinel ZnFe2O4 powders have been investigated. The characterization measurements including X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetomet...
متن کاملMAGNETIC AND TEXTURAL STUDIES OF XEROGEL AND AEROGEL NANOCOMPOSITES FORMED BY Ni FERRITES DISPERSED IN SILICA MATRIX
Nickel ferrites have been extensively studied due to their numerous applications in electronic devices, microwave adsorbents, corrosion protectors, magnetic fluids and catalysts [1-5], among others. Nickel ferrite is a soft material with inverted spinel with the tetrahedral site (A) occupied by Fe and the octahedral site occupied by Fe and Ni. It is applied to devices that require easy magnetiz...
متن کاملChemical Synthesis of Nano-Crystalline Nickel-Zinc Ferrite as a Magnetic Pigment
The nano-crystalline nickel-zinc ferrite was prepared via chemical synthesis. Zinc nitrate, nickel nitrate, iron nitrate hydrate, citric acid and ethylene glycol were used as precursor materials. Crystallization behavior of the precursor was studied by X-ray diffraction (XRD). Nanoparticle phases can change amorphous to spinel ferrite depending on the calcination temperature and crystallite siz...
متن کاملMicrostructure and Magnetic Properties of Sr2Co1.7Mg0.3Fe11.2 Hexaferrite Synthesized by Auto-Combustion Sol-Gel Method
A single phased Y-type hexagonal ferrite Sr2Co1.7Mg0.3Fe11.2Sn0.4Zn0.4O22 was synthesized by the sol–gel auto combustion method. Structural and magnetic properties of this composition of Y-type hexagonal ferrite have been investigated. The X-ray diffraction (XRD) patterns confirm single phase Y-type hexagonal ferrite and various parameters such as lattice constants and cell volume have been cal...
متن کاملHybrid polysaccharide-silica nanocomposites prepared by the sol-gel technique.
New monolithic nanocomposite silica biomaterials were synthesized on the basis of various natural polysaccharides and recently introduced completely water-soluble precursor tetrakis(2-hydroxyethyl) orthosilicate. The sol-gel processes were performed in aqueous solutions without the addition of organic solvents and catalysts. The silica polymerization was promoted by the polysaccharides through ...
متن کامل